跳转至

B - Red Black Tree

Basic Information

ContestThe 2018 ICPC Asia Qingdao Regional Contest, Online
Team AC Ratio147/1550 (9.5%)

Tutorial

Let \(\text{cost}(v_i)\) be the cost of vertex \(v_i\) before adding new red vertex. For the query \(v_1, v_2, \cdots, v_k\), sort all vertices by cost in descending order. If no modifications are made, the maximum cost is \(\text{cost}(v_1)\).

In order the make the maximum cost less than \(\text{cost}(v_i)\), the newly added red vertex must simultaneously affect the cost of vertices \(v_1, v_2, \cdots, v_i\). To minimize the maximum cost, it is obvious that this red vertex should be placed at the lowest common ancestor (LCA) of \(v_1, v_2, \cdots, v_i\). Let \(d(v_i)\) denote the distance from the root to node \(v_i\). Then, the maximum cost becomes

\[ \max\begin{cases} \max (d(v_1), d(v_2), \cdots, d(v_i)) - d(\text{lca}(v_1, v_2, \cdots, v_i)) \\ \text{cost}(v_{i + 1}) \end{cases} \]

Enumerate \(i\) from \(1\) to \(k\) and select the smallest maximum cost. If there are already other red vertices on the path from the LCA to a vertex \(v_j\), the value calculated by the above equation will certainly be greater than or equal to \(\text{cost}(v_j)\), and it won't be better than the cost at \(i = j - 1\). Since we only care about the smallest maximum cost, this does not affect the final answer.

The complexity is \(\mathcal{O}(n\log n + \sum k_i \log \sum k_i)\).

Solution

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
#include <bits/stdc++.h>
#define MAXN ((int) 1e5)
#define MAXP 20
using namespace std;

int n, m, q;
bool flag[MAXN + 10];

vector<int> e[MAXN + 10], v[MAXN + 10];
// dis[i]: distance from the root to vertex i
// cost[i]: cost of vertex i without adding new red vertex
long long dis[MAXN + 10], cost[MAXN + 10];
// maintain RMQ on the DFS sequence to calculate LCA
int clk, bgn[MAXN + 10];
int lg[MAXN * 2 + 10], f[MAXP][MAXN * 2 + 10];

void dfs(int sn, int fa) {
    f[0][++clk] = sn; bgn[sn] = clk;

    for (int i = 0; i < e[sn].size(); i++) {
        int fn = e[sn][i];
        if (fn == fa) continue;

        dis[fn] = dis[sn] + v[sn][i];
        if (flag[fn]) cost[fn] = 0;
        else cost[fn] = cost[sn] + v[sn][i];

        dfs(fn, sn);
        f[0][++clk] = sn;
    }
}

// RMQ pre-calculation
void preLca() {
    for (int p = 1; p < MAXP; p++) for (int i = 1; i + (1 << p) - 1 <= clk; i++) {
        int j = i + (1 << (p - 1));
        if (dis[f[p - 1][i]] < dis[f[p - 1][j]]) f[p][i] = f[p - 1][i];
        else f[p][i] = f[p - 1][j];
    }
}

// calculate LCA of vertices x and y
int lca(int x, int y) {
    if (bgn[x] > bgn[y]) swap(x, y);
    int p = lg[bgn[y] - bgn[x] + 1];
    int a = f[p][bgn[x]], b = f[p][bgn[y] - (1 << p) + 1];
    if (dis[a] < dis[b]) return a;
    else return b;
}

void solve() {
    scanf("%d%d%d", &n, &m, &q);

    memset(flag, 0, sizeof(bool) * (n + 3));
    for (int i = 1; i <= m; i++) {
        int x; scanf("%d", &x);
        flag[x] = true;
    }

    for (int i = 1; i <= n; i++) e[i].clear(), v[i].clear();
    for (int i = 1; i < n; i++) {
        int x, y, z; scanf("%d%d%d", &x, &y, &z);
        e[x].push_back(y); v[x].push_back(z);
        e[y].push_back(x); v[y].push_back(z);
    }

    clk = 0; dfs(1, 0);
    preLca();

    while (q--) {
        vector<int> vec;
        int t; scanf("%d", &t);
        while (t--) {
            int x; scanf("%d", &x);
            vec.push_back(x);
        }
        vec.push_back(0);
        sort(vec.begin(), vec.end(), [&](int a, int b) {
            return cost[a] > cost[b];
        });

        int anc = vec[0];
        long long mx = dis[vec[0]], ans = cost[vec[1]];
        // enumerate how many vertices will the new red vertex affect
        for (int i = 1; i + 1 < vec.size(); i++) {
            anc = lca(anc, vec[i]);
            mx = max(mx, dis[vec[i]]);
            ans = min(ans, max(mx - dis[anc], cost[vec[i + 1]]));
        }
        printf("%lld\n", ans);
    }
}

int main() {
    lg[1] = 0;
    for (int i = 2; i <= MAXN * 2; i++) lg[i] = lg[i >> 1] + 1;

    int tcase; scanf("%d", &tcase);
    while (tcase--) solve();
    return 0;
}