A - Sequence and Sequence
Contest | The 2018 ICPC Asia Qingdao Regional Contest |
Team AC Ratio | 0/373 (0.0%) |
Tutorial
Because \(n\) is large, we need to first try to reduce the range of \(n\). Note that there are only \(\mathcal{O}(\sqrt{n})\) different values of \(P(i)\), and only \(\mathcal{O}(\sqrt{n})\) values of \(i\) satisfy \(P_i - P_{i - 1} \ne 0\). If we can express \(Q(n)\) in the form of \((Q(P(i)) - Q(P(i - 1)))\), we can reduce the range of \(n\) to \(\mathcal{O}(\sqrt{n})\).
For convenience, we define \(Q(0) = P(0) = 0\).
First, according to the definition of \(Q\), it is easy to find that
\[
Q(n) = \sum\limits_{i = 1}^n Q(P(i))
\]
To get the form of \((Q(P(i)) - Q(P(i - 1)))\), we use a technique called summation by parts (also known as the Abel transformation). Let's introduce a constant polynomial \(f^{(0)}(x) = 1\), then
\[
Q(n) = \sum\limits_{i = 1}^n f^{(0)}(i) \times Q(P(i))
\]
Let \(F^{(0)}(x) = \sum\limits_{i = 1}^x f^{(0)}(i)\), then
\[
Q(n) = \sum\limits_{i = 1}^n (F^{(0)}(i) - F^{(0)}(i - 1)) \times Q(P(i))
\]
Using the summation by parts, we can extract the terms with the same \(F^{(0)}(i)\), then we get
\[
Q(n) = F^{(0)}(n) \times Q(P(n)) - \sum\limits_{i = 1}^n F^{(0)}(i - 1) \times (Q(P(i)) - Q(P(i - 1)))
\]
The desired \((Q(P(i)) - Q(P(i - 1)))\) appears! Based on the value of \(P(i)\), most of the terms can be eliminated, and we have
\[
\begin{matrix}
& \sum\limits_{i = 1}^n F^{(0)}(i - 1) \times (Q(P(i)) - Q(P(i - 1))) \\
= & \sum\limits_{i = 1}^{P(n)} F^{(0)}(\frac{i(i + 1)}{2} - 1) \times (Q(i) - Q(i - 1)) \\
= & \sum\limits_{i = 1}^{P(n)} F^{(0)}(\frac{i(i + 1)}{2} - 1) \times Q(P(i))
\end{matrix}
\]
Let the polynomial \(f^{(1)}(x) = F^{(0)}(\frac{x(x + 1)}{2} - 1)\), and let the function \(g(d, n) = \sum\limits_{i = 1}^n f^{(d)}(i) \times Q(P(i))\), then
\[
Q(n) = g(0, n) = F^{(0)}(n) \times g(0, P(n)) - g(1, P(n))
\]
We can see that we have transformed the problem \(g(0, n)\) into two smaller problems, \(g(0, P(n))\) and \(g(1, P(n))\), each of which has a size of \(\mathcal{O}(\sqrt{n})\). Let \(f^{(d)}(x) = F^{(d-1)}(\frac{x(x+1)}{2}-1)\) and \(F^{(d)}(x) = \sum\limits_{i = 1}^x f^{(d)}(i)\), then we can easily obtain the formula:
\[
g(d, n) = F^{(d)}(n) \times g(0, P(n)) - g(d + 1, P(n))
\]
When the problem size becomes small enough (in the data range of this problem, when \(d=4\) we have \(n \leq 605\), which is small enough), we can directly compute the answer.
The value of the polynomial can be evaluated by Lagrange interpolation. Note that every time we recurse, the degree of the polynomial will increase by \(1\) and then multiply by \(2\). Taking the deepest recursion level to be \(D=4\), the degree of the polynomial will be \(K=30\), and the maximum value of \(n\) will be \(N=605\). By appropriate pre-processing (see solution below), the pre-processing time complexity can be reduced to \(\mathcal{O}(K^2+DK+DN)\), and the time complexity of a single case can be reduced to \(\mathcal{O}(2^{D+1}K)\) (assuming the time complexity of high-precision arithmetic is a constant).
Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106 | from math import isqrt
# ======== Pre-process: the point-value representation of polynomial f and F ========
# the maximum degree of polynomial
MAX_K = 30
# prod[i][j] = product(i - k), 0 <= k <= j, k != i
prod = []
for i in range(MAX_K + 1):
prod.append([])
p = 1
for j in range(MAX_K + 1):
if i != j:
p *= i - j
prod[-1].append(p)
# given the point-value representation (0, y[0]), (1, y[1]), ..., (k, y[k])
# of a polynomial of degree k
# use Lagrange interpolation to calculate its value when the independent variable equals x
def evalPoly(x, y):
if x >= 0 and x < len(y):
return y[x]
p = 1
for i in range(len(y)):
p *= x - i
nume, deno = 0, 1
for i in range(len(y)):
a = y[i] * (p // (x - i))
b = prod[i][len(y) - 1]
nume = nume * b + deno * a
deno *= b
return nume // deno
# maximum recurse level
MAX_DEP = 4
# polys[i] is the point-value representation of f^{(i)}(x)
polys = []
polys.append([1])
# smPolys[i] is the point-value representation of F^{(i)}(x)
smPolys = []
for _ in range(MAX_DEP):
prevLen = len(polys[-1])
# F^{(i)}(x) is the prefix sum of f^{(i)}(x)
sm = [0]
for y in polys[-1][1:]:
sm.append(sm[-1] + y)
sm.append(sm[-1] + evalPoly(prevLen, polys[-1]))
smPolys.append(sm)
# f^{(i + 1)}(x) = F^{(i)}(x * (x + 1) // 2 - 1)
sq = []
for x in range(0, prevLen * 2 + 1):
sq.append(evalPoly(x * (x + 1) // 2 - 1, sm))
polys.append(sq)
# ======== Pre-process: the first few values of P and Q ========
# at the maximum recurse level, n < MAX_LEN
MAX_LEN = 610
P = [0]
t = 1
while len(P) <= MAX_LEN:
for _ in range(t + 1):
P.append(t)
t += 1
Q = [0, 1]
for i in range(2, MAX_LEN):
Q.append(Q[-1] + Q[P[i]])
# ======== Pre-process: the value of g(d, n) where d <= MAX_DEP and n < MAX_LEN ========
# S[d][n] = g(d, n)
S = []
for i in range(MAX_DEP + 1):
S.append([0])
for j in range(1, MAX_LEN):
S[-1].append(S[-1][-1] + evalPoly(j, polys[i]) * Q[P[j]])
# ======== Test cases starts from here ========
# if P(n) = p, then (p + 3) * p // 2 >= n and p is as small as possible
# we calculate the value of p by solving the quadratic equation
# because we use integer sqrt and division, we need to check a few larger values
def calcP(n):
p = (isqrt(8 * n + 9) - 3) // 2
while p * (p + 3) // 2 < n:
p += 1
return p
def g(d, n):
if n < MAX_LEN:
return S[d][n]
return evalPoly(n, smPolys[d]) * g(0, calcP(n)) - g(d + 1, calcP(n))
tcase = int(input())
for _ in range(tcase):
n = int(input())
print(g(0, n))
|