D - Magic Multiplication
Contest | The 2018 ICPC Asia Qingdao Regional Contest |
Team AC Ratio | 99/373 (26.5%) |
Tutorial
Once \(a_1\) is determined, we can uniquely determine a \(B\). This is because:
- If the current product starts with \(0\), since \(a_1 \neq 0\) is required by the problem, we must have \(b_i=0\).
-
If the current product starts with \(1\leq x\leq 9\), then there is only one number among \(1\) to \(9\) that, when multiplied by \(a_1\), can result in a number starting with \(x\).
You might be concerned about whether there exist \(b_i'\) and \(b_i''\) such that \(a_1\times b_i' = x\) and \(a_1\times b_i''\) is a two-digit number starting with \(x\). Obviously, this is not possible, because a two-digit number starting with \(x\) is at least \(10\) times of \(x\), so \(b_i''\) must be at least \(10\) times of \(b_i'\), but we only consider numbers from \(1\) to \(9\).
Therefore, we enumerate \(a_1\) from \(1\) to \(9\). After obtaining all the elements in \(B\), we can reversely calculate all elements in \(A\) using \(b_1\), and finally check whether this group of \(A\) and \(B\) is valid.
The time complexity is \(\mathcal{O}(9 \times |s|)\).
Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94 | #include <bits/stdc++.h>
#define MAXN ((int) 2e5)
using namespace std;
int n, m, sLen;
char s[MAXN + 10];
int A[MAXN + 10], B[MAXN + 10], f[10][100];
// given a factor (1 ~ 9) of the product, calculate the other factor (0 ~ 9)
// x: the given factor
// now: the position of product in s
int gao(int x, int &now) {
if (now > sLen) return -1;
// product starts with 0, the other factor must be 0
if (s[now] == '0') {
now++;
return 0;
}
// product not start with 0, check the multiplication table
int t = s[now] - '0';
if (f[x][t] > 0) {
now++;
return f[x][t];
}
t = t * 10 + (s[now + 1] - '0');
if (now < sLen && f[x][t] > 0) {
now += 2;
return f[x][t];
}
return -1;
}
// enumerate a_1 = X
bool check(int X) {
A[1] = X;
// use a_1 to determine all elements in B
int now = 1;
for (int i = 1; i <= m; i++) {
B[i] = gao(X, now);
if (B[i] < 0) return false;
}
// problem requires that b_1 != 0
if (B[1] == 0) return false;
for (int i = 2; i <= n; i++) {
// use b_1 to reversely calculate a_i
// here b_1 != 0, so we can also use the gao() function
A[i] = gao(B[1], now);
if (A[i] < 0) return false;
// check if the remaining product matches
for (int j = 2; j <= m; j++) {
int t = A[i] * B[j];
int l = t >= 10 ? 2 : 1;
for (int k = l - 1; k >= 0; k--) {
if (now + k > sLen || s[now + k] - '0' != t % 10) return false;
t /= 10;
}
now += l;
}
}
// we must use up all characters in the string
return now == sLen + 1;
}
void solve() {
scanf("%d%d%s", &n, &m, s + 1);
sLen = strlen(s + 1);
// enumerate a_1
for (int i = 1; i <= 9; i++) if (check(i)) {
for (int j = 1; j <= n; j++) printf("%d", A[j]);
printf(" ");
for (int j = 1; j <= m; j++) printf("%d", B[j]);
printf("\n");
return;
}
printf("Impossible\n");
}
int main() {
// pre-calculate the multiplication table
for (int i = 1; i <= 9; i++) for (int j = 1; j <= 9; j++) f[i][i * j] = j;
int tcase; scanf("%d", &tcase);
while (tcase--) solve();
return 0;
}
|